

Advanced knee course, Val d'Isère, 01-2016

Spectrum of ACL failures: Overview & algorythm

Romain Seil

Orthopaedic
SurgeryImage: Centre Hospitalier de LuxembourgCentre Hospitalier
de LuxembourgSports Medicine
Research LaboratoryImage: Centre Hospitalier de LuxembourgImage: Centre Hospitalier de Luxembourg

Dramatic event for all parties involved

To manage ACL failures, a surgeon should be a sensitive communicator, an astute clinician, a skilled surgeon familiar with different grafts and fixation techniques as well as being able to instil in his patients realistic expectations.

> Neil P. Thomas, Basingstoke, UK ESSKA president 2004-2006

ACL failure epidemiology

Age distribution

From: Lind M, Pedersen A: The Danish Anterior Cruciate Ligament Reconstruction Registry:What We Are Doing, How We Do It, and Which Would Be the Best Way to Do It ?

612 ACL reconstructions:

- \rightarrow 6% graft ruptures
- \rightarrow 6% contralateral ACL injuries
- \rightarrow 3 patients had both

Salmon L, Arthroscopy 2006

In: V. Sanchis-Alfonso, J.C. Monllau (eds.), The ACL-Deficient Knee, $\ensuremath{\mathbb{G}}$ Springer-Verlag London 2013

ACL failure epidemiology

The Swedish National Anterior Cruciate Ligament Register

A Report on Baseline Variables and Outcomes of Surgery for Almost 18,000 Patients

Mattias Ahldén,^{*†} MD, Kristian Samuelsson,[†] MD, PhD, Ninni Sernert,[‡] RPT, PhD, Magnus Forssblad,^{§||} MD, PhD, Jón Karlsson,[†] MD, PhD, and Jüri Kartus,^{‡¶} MD, PhD Investigation performed at the Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Mölndal, Mölndal, Sweden

<u>Revision rates:</u>

- ♦ Overall rate: 9,1 %
- ♦ Contralateral: 5%
- ♦ Ipsilateral 4,1%

♦ 15-18 y.old female football players: 22 %

ACL failure epidemiology

orp.

ACL retear epidemiology

66 ACL revisions:

- \rightarrow mean time ACL-R to ACL-REV 62 mo.
- \rightarrow 40 % reruptures in first year
- \rightarrow 126 surgical procedures in same knee (2.52)

Denti M, Am J Sports Med 2008

ACL retear epidemiology

Repair the meniscus !

ACL survival:

- \rightarrow 95 % if intact menisci
- \rightarrow 68 % if deficient meniscus
- \rightarrow 4.9 times higher failure risk with meniscal loss

Robb C, KSSTA 2014

→ <u>Technical errors</u>

nonanatomic tunnel placement improper tensioning failure of fixation insufficient graft material

→ Biological failure

failed ligamentization infection arthrofibrosis

→ <u>New trauma</u>

early (before biological integration)
late (after integration)
failure → trauma or trauma→ failure

→ <u>Secondary to associated instability</u>

multiligament instability

Retrospective study

186 = ר	Anterior femoral tunnel	38%
	Traumatic origin	27%
	Tibial tunnel malposition	10%
	Impingement	11%
	Fixation failure	
	Ignored laxity	
	Hyperlaxity	
	Infection	
	No obvious cause	18 %
	Derticipating control Derdouw Droot Coop I	ver Nice Derie V

Cours et Congrès Annuels

35

NICE 200

CIPSANTE

crp-sante.lu

Participating centres: Bordeaux, Brest, Caen, Lyon, Nice, Paris, Versailles, Toulouse

9

Prospective study

n = 104	Anterior femoral tunnel	36%
	Trauma	35%
	Tibial tunnel malposition	15%
	Fixation failure	7%
	Hyperlaxity	5%
	Ignored laxity	5%

No obvious cause

10%

Participating centres: Bordeaux, Brest, Caen, Lyon, Nice, Paris, Versailles, Toulouse

Cours et Congrès Annuels

35

Failure of fixation

CONTRACTOR

Adolescents

♦ Knee growth & maturation♦ Lower IKDC scores

• \bigcirc ACL tear + reconstruction @ 13;

Crp

crp-sante.lu

- Retear and 2nd reconstruction @ 16;
- Re-retear and 3d reconstruction @ 17

chl.lu

Females

15

♦ Anatomic factors

♦ Hormonal factors

♦ Neuromuscular factors

Females: anatomic factors

	Men (n=35)	Women (n=25)	Δ (%)
TR ^{5 Nm} (°)	41.8 <u>+</u> ^{8.9}	58.8 <u>+</u> ^{8.8}	40.1

Women have a 40% increased rotational laxity (Park, JOR 2008; Shultz, JOR 2007; Mouton, KSSTA, 2012)

- Hyperextension
- Valgus
- Smaller ACL, smaller notch
- Increased rotation

Females: neuromuscular factors

- Increased quadriceps contraction & lesser flexor muscle activation than males
- \rightarrow increased strain on ACL

Graft remodeling

Fate of the graft ?

Anterior tibial displacement at 50 N

- Ovine model
- Intraarticular model.
- Direct, aperture fixation
- Graft weakness highest
 - at 6 and 9 weeks

After tendon-bone healing it is the intraarticular portion of the graft which is the weakest link in the bone-graft-bone construct.

Longitudinal follow-up

chl.lu

Low failure risk case

Longitudinal follow-up

chl.lu

High failure risk case

Longitudinal follow-up

High failure risk case

Results

Lower Risk of Revision With Patellar Tendon Autografts Compared With Hamstring Autografts

A Registry Study Based on 45,998 Primary ACL Reconstructions in Scandinavia

Tone Gifstad,^{*†‡} MD, PhD, Olav A. Foss,^{†‡} MD, PhD, Lars Engebretsen,[§] MD, PhD, Martin Lind,^{||} MD, PhD, Magnus Forssblad,[¶] MD, PhD, Grethe Albrektsen,[‡] PhD, and Jon Olav Drogset,^{†‡} MD, PhD *Investigation performed at Trondheim University Hospital, Trondheim, Norway*

Gifstad T, AJSM 2014

Results

KNEE

Reconstruction of the anterior cruciate ligament

ASSOCIATION OF GRAFT CHOICE WITH INCREASED RISK OF EARLY REVISION

Maletis G, BJJ 2013

Risk factors

<u>Summary</u>

risk

- \rightarrow Age (young)
 - → Gender (female)
 - \rightarrow Laxity (recurvatum knee)
 - → Graft type (hamstring tendon autograft, allograft)
 - → Sports type (football)
 - → Meniscus deficiency

- → Metal IF screw + hamstring tibia
 - \rightarrow Extraarticular procedure (ALL) (?)

Kim SJ, CORR 2010 Maletis GM, BJJ 2013 Andernord D, AJSM 2014 Robb C, KSSTA 2014 Sonnery-Cottet B, AJSM 2015

ACL revisions

\rightarrow Indications:

- \rightarrow Functional instability (rotation)
- \rightarrow Pain
- \rightarrow Pain & instability
- \rightarrow Limited ROM
- \rightarrow Infections

Revision surgery depends on primary surgery

Preoperative planning

Preoperative planning

Mandatory to get the full picture !

Don't get fooled by first impression !

Preoperative planning

Clinical examination

Preoperative planning

Clinical examination: gait

chl.lu

Preoperative planning

<u>Clinical examination: instrumented laxity measurements</u>

Preoperative planning

Clinical examination: functional evaluation

- ♦ neuromuscular control
- \diamond force (isokinetics) (LSI)
- ♦ Hop tests (LSI)
- ♦ Scores (IKDC, KOOS)

Preoperative planning

Imaging: standard radiographs

32

- ♦ AP, lateral, skyline, schuss
 ♦ Long leg standing radiograph
- ♦ Graft type
- ♦ Hardware
- ♦ Tunnel placement & widening
- ♦ Patellar height
- ♦ Bone quality
- ♦ OA & alignment

Preoperative planning

Imaging: stress radiographs

Preoperative planning

Imaging: MRI

- ♦ Graft type & integrity
- ♦ Fixation devices
- ♦ Tunnel placement & widening
- ♦ Bone marrow edema
- ♦ Cartilage
- ♦ Meniscus

Preoperative planning

Imaging: CT scan

- ♦ Bone defects
- \diamond Ossifications
- ♦ Cartilage (arthro CT)

Courtesy of Prof. G. Camillieri, Rome, Italy

Preoperative planning

Imaging: bone scan (scintigraphy) / SPECT CT

- ♦ Compartment overload
- \diamond OA
- \diamond Infection
- \diamond CRPS

Revision strategy

Preoperative planning

<u>1 vs. 2-stage revision ?</u>

- \diamond > 90% 1-stage revision surgery
- \diamond 2-stage if:
 - Tunnel enlargement
 - Bone loss
 - Artificial ligament
 - Technical problems
 - Limited ROM

Revision strategy

Preoperative planning

2-stage revision

Revision strategy

Preoperative planning

2-stage revision

- \rightarrow Graft selection
- \rightarrow Skin incision
- \rightarrow Hardware removal
- → Notchplasty
- \rightarrow Tunnel placement
- \rightarrow Graft fixation

<u>Strategy</u>

Revision ACL-reconstruction:

- 1. Confirmation of diagnosis
- 2. Hardware removal
- 3. Repair of associated injuries
- 4. Tunnel management
- 5. Graft harvesting
- 6. Graft fixation

<u>Graft type</u>

- \rightarrow BPTB
- \rightarrow ST/G
- \rightarrow Quadriceps
- \rightarrow Allograft
- \rightarrow Contralateral grafts

Strategy: hardware removal

♦ Specific instruments (screwdrivers)

 \diamond Sometimes removal not required

\rightarrow no interference

\rightarrow better tunnel stability

Beware metal debris

Strategy: tunnel management

If previously correct \rightarrow use the same !

Tibia: Stäubli HU, Rauschning W, KSSTA 1994 Femur: Bernard M, Hertel P, Am J Knee Surg 1997

crp-sante.lu

crp

Strategy: tunnel management

If previously uncorrect \rightarrow the worse the tunnel placement, the easier the revision

Check bone quality (bone bridges)

- If too wide \rightarrow bigger bone block
 - \rightarrow bone grafting
 - \rightarrow 2-step
 - \rightarrow change technique

(hardware, 2 incision, over the top)

Strategy: tunnel management

Evaluate bone healing capacity & tunnel stability

Strategy: tunnel management

Tibia: too posterior \rightarrow new anterior or bone grafting

Strategy: tunnel management

Tibia: too medial \rightarrow consider lateral

Van der Bracht H, Arthroscopy 2012; Acta Orthop Belg 2012

chl.lu

Strategy: tunnel management

Femur: too posterior \rightarrow out-in tunnel or extracortical

Alternatives: Out-in drill guide
Extracortical fixation
techniques

Strategy: tunnel management

Strategy: notchplasty

Strategy: graft fixation

- \diamond Usually similar to primary procedures
- ♦ Several solutions available (IF screws, extracortical fixations with buttons, lag screws, …)

Strategy: associated procedures

53

Crp

crp-sante.lu

- \diamond Meniscus
- $\diamond \text{EAP}$
- ♦ Cartilage
- ♦ Osteotomy
- ♦ Other ligaments

Rehabilitation

1st Return-to-Sports Group Luxembourg

1-stage revision

- \diamond Free ROM
- Full weightbearing as tolerated (except massive bone graft)
- Brace only if associated meniscal repair
- \diamond Jogging at 3 months
- ♦ Sports at 6-9 months

3 categories

60 % ♦ Similar to primary ACL-R

(correct anatomic position, good quality bone, limited associated injuries)

30 % ♦ More limited but still encouraging (complex multiligament instabilities, major cartilage lesions, limited quality bone stock, long standing symptoms of instability and pain)

Feucht MJ, KSSTA 2014 Shelbourne KD, AJSM 2014 Sonnery-Cottet B, AJSM 2014

Proximal Tibial Anterior Closing Wedge Osteotomy in Repeat Revision of Anterior Cruciate Ligament Reconstruction

Bertrand Sonnery-Cottet,^{*†} MD, Stefan Mogos,[†] MD, Mathieu Thaunat,[†] MD, Pooler Archbold,[‡] MD, Jean-Marie Fayard,[†] MD, Benjamin Freychet,[†] MD, Julien Clechet,[†] MD, and Pierre Chambat,[†] MD *Investigation performed at the Centre Orthope dique Santy and Hôpital Privé Jean Mermoz, Lyon, France*

- \diamond 5 patients, min. 2 ACLs; all tibial slope > 12°
- ♦ IKDC (subj.): $40 \rightarrow 80$
- ♦ Laxity: 10,4 \rightarrow 2,8

Sonnery-Cottet B, AJSM 2014

<u>Laxity</u>

Denti M, AJSM 2008 Denti M, KSSTA 2006

Function: IKDC

Primary ACL-R group Luxembourg, unpublished data

Conclusions

ACL revisions

- \diamond Can be challenging
- ♦ Understand symptoms & failure causes
- ♦ Preoperative planning
- ♦ Always consider plan B (2-stage procedure)
- ♦ Normal knee function can be expected in majority of cases
- ♦ Prognosis depends on associated lesions
- $\diamond\,$ Some cases with salvage procedure

17th ESSKA Congress

ESSKA President Matteo Denti (Italy) **Congress President** Joan C. Monllau (Spain) Scientific Chairman Roland Becker (Germany) Gino M. Kerkhoffs (Netherlands) Pablo E. Gelber (Spain) Organiser & Contact Intercongress GmbH esska@intercongress.de

Strategy: hardware removal

Revision surgery should be considered during the development phase of primary ACL-R techniques

Strategy: tunnel management

Tibia: too anterior \rightarrow new posterior

<u>ACL-retear</u> 34 y. old man

Rotational instability

<u>ACL-retear</u> <u>34 y. old man</u>

Quadriceps tendon graft

<u>ACL-retear + PCL/PLC-injury</u>

ACL revision, PCL, LCL, posterolateral

crp-sante.lu

C C C P SANTÉ

♀, 42 y., painful instability; ACL retear

ACL-retear + medial compartment overload

CIP

Valgus HTO (no slope change)+ R-ACL

Strategy: tunnel management

Femur: too anterior / vertical \rightarrow new posterior / horizontal

ACL revisions

Harner CD, 1996

chl.lu 🤇

